

Quantitative Guidelines on Radiation Model Selection for Material Response Simulation

¹ Vincent Leroy
 ² Jean Lachaud
 ¹ Thierry Magin
 14th International Planetary Probe Workshop
 June 12th–16th 2017 — The Hague, The Netherlands

¹von Karman Institute for Fluid Dynamics, Belgium ²C la Vie, Nouméa, New Caledonia

Radiation in Porous Media

A critical modeling point

- In lightweight ablative TPS: radiation has an impact close to conduction starting from \sim 1000 K
- Only basic modeling in common simulation tools

Modeling approaches

- Radiation Transfer Equation
- Differential approximations (moment methods)
- Radiative Fourier law

Current implementation in material response codes

- Radiative Fourier law in the medium
- Opaque-body radiative BCs

Model benefits and drawbacks

- ✓ Very cheap numerically
- ✗ Strong modeling hypotheses

Input data

- $\cdot \ {\ensuremath{\mathbb R}}^{\ensuremath{\mathbb R}}$ accessed through LFA
- No immediate experimental separation from conductive contribution

 $P^{\mathsf{R}} = \nabla \cdot \left(\mathbb{k}^{\mathsf{R}}(T) \cdot \nabla T \right)$ $\boldsymbol{q}^{\mathsf{R}} = \varepsilon \sigma_{\mathsf{SB}} \left(T_{\mathsf{w}}^{4} - T_{\infty}^{4} \right)$

Is our radiation model good enough? Are improvements necessary? What should be improved?

Models

Material response model

- "Type 2" material response model (Lachaud et al., 2011)
- Solver: PATO
- Based on OpenFOAM
- \cdot Uses Mutation⁺⁺ for chemistry and gas properties

Radiation transfer model

- Non-scattering medium $\Rightarrow \beta = \kappa$, $\kappa^{\text{eff}} = \kappa$
- No radiative property variation
- RTE solver: Monte Carlo ray tracing

Monte Carlo ray tracing principles

Test Case

Basic setup

- 1 D sample
- Size L = 5 cm
- Flux-driven BC (CMA) at x = L
- Zero-flux BC at x = 0
- Properties: TACOT 2.2, modified conductivity values

Boundary conditions

Blackbody temperature:

$$T_{\rm e} = 1750 ~{\rm K}$$

Initial conditions

T = 300 K

Test case breakdown

- 1. Reference (original PATO model)
- 2. Fourier law
- 3. RTE with Monte Carlo ray tracing

Probe positioning

1		 	 	
		۲	⊥	140
A	·	 	 	

Results and Discussion

Fourier

Results and Discussion

Monte Carlo RTE

Summary

- Reasonable accuracy of the radiative Fourier law **outside the** radiative boundary layer
- Improving models for the radiative boundary layer is critical

Future works and perspectives

- Testing for a wider variety of cases
- Modeling in the radiative boundary layer (near-interface region)

Questions?

PATO: https://software.nasa.gov/software/ARC-16680-1
Mutation⁺⁺: https://sync.vki.ac.be/mpp/mutationpp

Backup Slides

Material Response Model

Type 2 material response model main features (Lachaud et al., 2011)

- Momentum conservation (Darcy law)
- Pyrolysis
- Finite-rate gas chemistry
- Element-based gaseous species mass conservation
- CMA boundary condition

Implementation: PATO (Lachaud, 2017)

- Based on OpenFOAM
- Open source
- Implements Type 2+ features
- \cdot Uses Mutation⁺⁺ for gas properties

Radiation Transfer Model

Main hypotheses

- Non-scattering medium $\Rightarrow \beta = \kappa, \kappa^{\text{eff}} = \kappa$
- No radiative property variation

Implementation: MCGM (Monte Carlo solver for Gray Media)

- RTE solver implemented in C++
- Client-server parallel architecture (MPI)
- One-dimensional
- Fully reciprocal method
- Validated on multiple test cases

Custom OpenFOAM radiation library

- Intermediate abstraction level
- Uses runtime selection mechanism for better extensibility
- $\cdot\,$ Supported models: Fourier law and RTE via interface with MCGM

Model Accuracy Quantification

Validity criterion for the Fourier law (Gomart and Taine, 2011)

- 1. Not in the radiative boundary layer Works only in the core of the shield \Rightarrow thickness = $5/\kappa$
- 2. Limited variations of temperature

Problems in the near-interface region

Hottest region

- \Rightarrow Radiation transfer is more intense
- Close interface & higher porosity \Rightarrow Increased chance to invalidate crit. 1
- Steep temperature gradients \Rightarrow Increased chance to invalidate crit. 2

Monte Carlo RTE

Monte Carlo RTE

Fourier

Fourier

