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General problem

High velocity atmospheric entry of a
spacecraft generates high heat fluxes (up to
10MWm−2, shield temperature up to 3000K)

Protection of payload requires an appropriate
thermal protection system (TPS)

High mission costs: Accurate predictions are
essential to reduce safety factors

Lightweight porous carbon/phenolic resin
ablators absorb the heat load through an
endothermic pyrolysis reaction

V. Leroy Radiation transfer modeling for aerospace TPS thermal response simulation 2



Lightweight ablative thermal protection

Essential element of shield design: Material response modeling
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Gas flow

Transport and reaction of pyrolysis products

Radiation transfer in hotter regions
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Multiple, coupled physical phenomena
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Challenges and stakes of modeling and material
characterization

Model inputs require medium characterization

Central element of characterization: Material testing (e.g. TGA, LFA, M-DSC)

It is a challenge due to extreme conditions: gathering data for flight conditions
is difficult

Every addition to a model requires further testing:
the impact has to be assessed
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Radiation modeling for TPS
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Modeling radiation transfer in porous media

Typical configuration
• one opaque phase

• one transparent phase

Multiscale view
• pore-scale: surface radiative interaction

• macro-scale: participating homogeneous medium

Several approaches exist for upscaling (not discussed here)

Common macro-scale models for radiation transfer

• radiation transfer equation (possibly generalized)

• radiative Fourier law

Source

Extinction :
absorption
reflection

Source
Extinction :
absorption
scattering
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Current model

Fourier PR = ∇ ·
(

kR · ∇T
)

“constrained” cheap

PR = −∇ ·
(∫

4π
Iν(r, u) u dΩ

)
RTE u · ∇rIν (r, u) = Se

ν (r, u)− βν (u) Iν (r, u) “flexible” expensive

+

∫
4π
σν
(
u′
)
Iν
(
r, u′

) pν (r, u′, u)

4π
dΩ′

Engineering models for spaceraft TPS use the radiative Fourier law due to

• cheap computational cost and ease of implementation

• ease of characterization (LFA)
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Current model (cont’d)

Validity criterion for the Fourier law (Gomart and Taine, 2011)

1 Not in the radiative boundary layer: works only in the core of the shield

2 Limited variations of temperature

1

κeff

‖∇T‖
T

< η with κ ≤ κeff ≤ κ+ σ(1− g)

Effective absorption coefficient
accounting for multiple scattering

Quantifies “� 1” (depends on re-
quested accuracy for Fourier’s law)

Problems in the near-interface region

• Hottest region ⇒ Radiation transfer is more intense
• Close interface & higher porosity⇒ Increased chance to invalidate crit. 1
• Steep temperature gradients ⇒ Increased chance to invalidate crit. 2
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Analysis of a simple case
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Problem description

Geometry

Pore scale:

• Opaque/transparent configuration

Macro scale:

• One-dimensional sample of size L = 5 cm 0 L

Governing equations

Energy balance (conduction and radiation)

ρcp
∂T
∂t

=
∂

∂x

(
keff ∂T

∂x

)
+ PR

Boundary conditions (∼ plasmatron test):

• Zero flux at x = 0

• T =

{
273K at t = 0
2273K at t ≥ 5 s

at x = L
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Implementation

Material properties

Fictitious lightweight ablator designed for code benchmarking: TACOT 3.0
(Lachaud et al., 2012)

Conduction code
• OpenFOAM solver

• Finite volume discretization, explicit time stepping

Radiation code

• Monte Carlo ray tracing code (C++)

• Reciprocal Monte Carlo method with deterministic absorption

• Supports isotropic Beerian absorption and scattering

• Client-server architecture for convenient coupling based on MPI
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Temperature field analysis
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Temperature field analysis
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Temperature field analysis
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Temperature field analysis
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Conclusions
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Conclusions

Summary
• Validity criterion is ideal for the selection of a model

• Overall effect on a non-reacting sample is very limited in the conditions
considered

Future works
• Testing in a high-temperature case

• Impact on the recession rate for a reacting sample

• Design of a hybrid radiation code if relevant
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Questions?
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Backup slides

V. Leroy Radiation transfer modeling for aerospace TPS thermal response simulation 19



Ablative C/P shield phenomenology

Virgin
material

Pyrolysis
zone

Ablation 
zone

≈ 400 K

≈ 1200 K

≈ 1400 K

Coking
zone

≈ 3000 K

OH

Phenolic polymer

H2   +

C6H6 + H2O

C6 + 3 H2

3 C2H2

C (s)

2 O

O2

2 C (s) + O2 

→  2 CO

Chemistry mechanisms
(simplified illustration)

 Scanning Electron   
Microscopy (SEM) :  
Carbon preform

SEM:  carbon/phenolic
(virgin) [Stackpoole, 2008]

Boundary
layer

Non-viscous
flow

Macroscopic phenomenology Macroscopic illustration Microscopic illustration

 - Phenolic-decomposition products ++

-  Phenolic-decomposition rate *

Gas/surface 
Interactions in porous 
fibrous media:
- ablation  #

- erosion #

- recombination #

- convective heating #

- radiative heating  #

Material/flow coupling
-  Boundary layer transfers (heat and mass) #

-  Recombination/catalicity  #

-  Ablation (oxidation, sublimation, spallation)
Interface phenomena:  Heat  and mass balance *,
Subsurface phenomena
-  In-depth ablation ++

-  Penetration of radiation #

-  Gas flow entering into the material  #

 
-  Conduction heat transfer *
-  Radiation heat transfer (empirical*, modeled ++) 
-  Finite-rate chemistry of the pyrolysis gases  ++

-  Coking  ++

-  Multi-component diffusion ++ (atm. gas/ pyro. gas)
-  Convective transport (Darcy +, Klinkenberg ++)
-  Charring process (evolution of the density*, 
porosity +, tortuosity ++, permeability  +, effective 
conductivity *, effective surface area  ++)

Long distance effects
- Radiation #

3D numerical reconstitution of a 
carbon/phenolic composite

coking

rad.

Heat

3D simulation of the ablation of a 
carbon/phenolic composite [Lachaud, 2010]

≈ 6000 K

* : type 1 (e.g. CMA)
+ : type 2 (PAM_2)
++ : type 3 (PAM_3)
# : research in progress (elementary analysis 
modules – e.g. COACO for carbon-fiber ablation)

(Lachaud et al., 2011)
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Verification through ground testing

Ground testing (e.g. plasma torch + longshot) can be used for verification

(Helber, 2016)
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Material properties

Thermophysical properties

• ε = 0.85

• ρ = 2.6× 102 kgm−3

• cp = 1.8× 103 J kg−1 K−1

• keff = 0.40Wm−1 K−1 (isotropic)

Radiative properties

• kR = CT 3 with C = 5.1× 10−11SI

• no scattering: C =
16σS
3κ

• κ = 5.9× 103m−1

0 1000 2000 3000

T [K]

0

1

2

[W
m
−
1
K
−
1
] kTACOT

keff + kR

Values obtained from properties of charred-state TACOT 3.0 (Lachaud et al., 2012)

Fictitious lightweight ablator designed for code benchmarking
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